
6.832 Midterm

Name: SOLUTIONS

October 23, 2014

Please do not open the test packet until you are asked to do so.

• You will be given 85 minutes to complete the exam.

• Please write your name on this page, and on any additional pages that are in
danger of getting separated.

• We have left workspace in this booklet. Scrap paper is available from the staff.
Any scrap paper should be handed in with your exam.

• YOU MUST WRITE ALL OF YOUR ANSWERS IN THIS BOOKLET (not the scrap
paper).

• The test is open notes.

• The test is out of 35 points.

Good luck!

Problem Possible Your Score

Problem 1 5

Problem 2 10

Problem 3 10

Problem 4 10

Total 35
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Problem 1 (5 pts) The Linear Quadratic Regulator
Suppose you are given a stabilizable linear system

ẋ = Ax + Bu,

and the cost-to-go function

J(x0) =

∫ ∞
0

[
x(t)TQx(t) + uT (t)Ru(t)

]
dt, x(0) = x0,

with QT = Q � 0, RT = R � 0, and eig(A) 6= 0. I can plot the level-set of
the optimal cost-to-go function J∗(x) = 1; for this problem formulation the optimal
cost-to-go is a positive-definite quadratic function, J∗ = xTSx, S = ST � 0 and the
level-set is an ellipse. The optimal control is given by u∗ = −Kx.

a) If I were to double the value of R (so Rnew = 2R), what happens to the 1
level-set of the cost-to-go? (Circle one)

(i) It gets bigger (the volume of the ellipse increases)

(ii) It gets smaller (the volume of the ellipse decreases)

(iii) The size does not change (the volume of the ellipse remains constant)

Give a mathematical justification for your answer:

Solution: The answer is (ii) - it gets smaller. Intuitively, by increasing the instan-
taneous cost in this way, the cost-to-go can only increase. To see this formally,
write the cost function as

Jnew(x0) =

∫ ∞
0

[
xTQx + uTRu

]
dt+

∫ ∞
0

uTRudt

To be very clear, we let us write J(x0,K) for the cost of executing with the
controller u = −Kx. We would like to compare the cost-to-go Jnew(x0,K

∗
new)

to the original optimal cost-to-go J(x0,K
∗).

First observe that the optimal control gains for the new problem, K∗new, can-
not produce a lower cost on the original problem, otherwise they would have
outperformed the original optimal controller, so

J(x0,K
∗
new) ≥ J(x0,K

∗).

Furthermore, since R is strictly positive definite, we have

Jnew(x0,K
∗
new) ≥ J(x0,K

∗
new).

Note that by giving Q strictly positive definite and A non-zero, we assure that
the optimal control gains K∗new are non-zero, which gives Jnew(x0,K

∗
new) >

J(x0,K
∗
new) (except for equality at x0 = 0).

Since the cost-to-go is quadratic and strictly greater than the original cost-to-go,
the 1-level set is strictly smaller.
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b) Now suppose that you have doubled both Q and R, so

Qnew = 2Q, Rnew = 2R.

Which of the following statements about the resulting optimal cost-to-go,

J∗ = xTSnewx,

are true (circle all that apply).

(i) Snew = 1
4S

(ii) Snew = 1
2S

(iii) Snew = S

(iv) Snew = 2S

(v) Snew = 4S

Give a mathematical justification for your answer:

Solution: The answer is (iv) - Snew = 2S. Intuitively, we would expect that if
we simply double the instantaneous cost then we would also simply double the
cost-to-go. Mathematically, we can see that if S is a solution to the algebraic
Riccati equation,

0 = Q− SBR−1BTS + SA+ATS,

then Snew = 2S must be a solution to

0 = 2Q− SnewB(2R)−1BTSnew + SnewA+ATSnew.

3



6.832 Midterm, Fall 2014 Name:

c) Continuing with the formulation in part (b), which of the following statements
about the resulting optimal controller,

u∗new = −Knewx,

are true (circle all that apply):

(i) Knew > K

(ii) Knew = K

(iii) Knew < K

where the inequality is taken element-wise. Remember the−K in the description
above.

Give a mathematical justification for your answer:

Solution: The answer is (ii) - Knew = K. Following the solution to part (b), we
know that

u∗new = −(2R)−1BTSnewx = −Kx.

This is as we would expect - doubling the cost doubles the cost-to-go, but does
not actually change the optimal policy.
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Problem 2 (10 pts) Lyapunov analysis

a) Suppose you have a system ẋ = f(x) with f(0) = 0 and a positive-definite
scalar function V (x) where you have successfully verified that

V̇ (0) = 0

V̇ (x) < 0, ∀x with 0 <
∑
i

|xi| ≤ 1.

Describe the set of initial conditions for which you can guarantee that the system
will arrive at the origin as t→∞. Explain your answer.

Solution: The conditions above guarantee that V does not increase while the
system is inside the region described (which you may have recognized as the
unit ball for the l1 norm). But we can only guarantee convergence for trajecto-
ries which never leave this region. The best we can guarantee is the sub-level
set, V ≤ ρ where ρ is the smallest value of V on the boundary described by∑

i |xi| = 1.
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b) Consider an uncertain nonlinear system of the form

ẋ = f1(x) + αf2(x), α = {0.8, 1.1}.

In words, the uncertain gain α is known to take one of exactly two values – either
0.8 or 1.1, but we do not know apriori which one.

(i) Suppose that you know that the origin, x = 0, is a fixed point for the
system ẋ = f1(x) + f2(x). Is the origin guaranteed to be a fixed point for
the uncertain system? Circle yes or no.

YES or NO
Explain your answer:

Solution: The answer is NO.

ẋ = 0⇒ f1(x) = −f2(x),

but does not say anything about αf2(x).
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(ii) Suppose that you are given a radially-unbounded, positive-definite Lya-
punov function, V (x), which satisfies the conditions

∀x 6= 0, V̇ (x, 0.8) < 0, V̇ (0, 0.8) = 0,

∀x 6= 0, V̇ (x, 1.1) < 0, V̇ (0, 1.1) = 0,

where I’ve used the notation V̇ (x, α) = ∂V
∂x [f1(x) + αf2(x)] .

Which of the following can we conclude about the system

ẋ = f1(x) + f2(x)

i. The origin is globally stable in the sense of Lyapunov (i.s.L.).
ii. The origin is globally asymptotically stable.

iii. The origin is globally exponentially stable.
iv. None of the above.

Circle all that are true. Provide a mathematical justification for your an-
swer:

Solution: The first two are true (i and ii). This can be demonstrated by
realizing that the original system can be written as an affine combination
of the two systems, and therefore we have

V̇ (x, 1) =
1

3
V̇ (x, .8) +

2

3
V̇ (x, 1.1) < 0,

for x 6= 0 and V̇ (0, 1) = 0. Since V is radially-unbounded this satifies
the conditions to demonstrate global asymptotic stability of the origin, and
also stability i.s.L.
Note that this may be surprising given the result in part (a), but in fact
knowing that V is strictly decreasing for both systems away from x = 0
implies that x = 0 is the fixed point for the original system as well.
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(iii) Suppose that you are given a radially-unbounded, positive-definite Lya-
punov function candidate, V (x), which you know fails to satisfy the Lya-
punov conditions globally, but you would like use sums-of-squares (SOS)
optimization to verify the conditions:

∀x ∈ {x : V (x) ≤ 1}, V̇ (x, 0.8) ≤ 0

∀x ∈ {x : V (x) ≤ 1}, V̇ (x, 1.1) ≤ 0.

Write down a sums-of-squares program by listing the decision variables
and all of the required sums-of-squares constraints in the boxes below.

find

λ1(x), λ2(x)

parameterized by λ1(x) = aTm1(x) and λ2(x) =
bTm2(x), where a and b are vectors of decision vari-
ables and m1(x) and m2(x) are monomial vectors.

(list decision variables)

subject to

−V̇ (x, 0.8) + λ1(x)(V (x)− 1),

λ1(x),

−V̇ (x, 1.1) + λ2(x)(V (x)− 1),

λ2(x)

is SOS

Note that it is also acceptable to use the same multipliers for both systems,
this would potentially be more conservative but would also use less deci-
sion variables so could allow you to search over more monomial vector
coefficients.
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Problem 3 (10 pts) Trajectory optimization
Imagine the simple model of a juggling robot illustrated below, which consists of a

paddle that can move vertically (with configuration described by the position r, which
is negative in the figure) and a ball (modeled as a point with mass m at vertical height
b).

b	  

r	  

g	  
m	  

Our input is direct control of the velocity of the paddle, resulting in a hybrid state space
model with

x =

rb
ḃ

 , ẋ = f(x, u) =

 u

ḃ
−g

 ,
and a simple elastic collision model,

ḃ+ = ṙ − .9(ḃ− − ṙ).

We assume the paddle is sufficiently massive to be unaffected by the collision with the
ball.

Let us formulate a direct transcription trajectory optimization problem with 11 knot
points to find a periodic solution for this system with exactly one collision per period.
We will use the decision variables

x0, ...x10, u0, ..., u9, h.

and add the dynamic constraints

xn+1 = xn + f(xn, un)h,

where h > 0.01 is the timestep between knot points.
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a) Let us enforce that the paddle and the ball only come into contact at height 0.
Write down all of the required constraints that you must add to the program relat-
ing to the hybrid guard and reset (aka collision). Your answers should be written
in terms of differentiable functions of the decision variables named above.

Solution: We can accomplish this by, e.g., requiring that the ball always stays
above vertical and the paddle always stays below the ball (except at the end-
points):

b0 = b10 = 0

r0 = r10 = 0

r1 < b1, r2 < b2, ..., r9 < b9

and we add the periodicity/reset constraint

ḃ0 = u0 − .9(ḃ10 − u0).

Note that b1, ..., b9 > 0 will be enforced automatically given the dynamic con-
straints (but it does no harm to include it).

b) To further constrain the solution, let us require that the apex of the ball occurs
at a height of 1. Write any additional constraints required to enforce this. Your
answers should be written in terms of differentiable functions of the decision
variables named above.

Solution: While there are many creative ways to enforce this constraint, the
simplest by far is to realize that the solution ball dynamics during the aerial
phase will always be symmetric in time (it is the ballistic trajectory of a point
mass). Therefore, it is sufficient to add the constraint

b5 = 1.

Note that ḃ5 = 0 will be enforced automatically by the dynamic constraints (but
it does no harm to include it).

11



6.832 Midterm, Fall 2014 Name:

c) Do you expect the problem you have formulated so far to have a unique solution?
If not, explain why and provide a reasonable additive-cost objective function
written in terms of the decision variables.

Solution: The problem so far has done nothing to describe the desired trajec-
tory for the paddle, except to constrain the velocity at time 0 (and therefore 10)
and say that we’d like the paddle to always be below the ball. Therefore, we
can express our preference for the motion of the paddle through the objective
function. A simple integral cost penalizing paddle velocity should do the trick:

9∑
i=0

u2i .

I would expect the result to be a paddle trajectory the matches the required veloc-
ities at the endpoints, and then evenly distributes over the remaining trajectory
the velocity required to reset the paddle for the next hit.
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Problem 4 (10 pts) Nonlinear Dynamics and the Hamilton-Jacobi-Bellman Equa-
tions

a) Suppose you are given the system

ẋ = x+ u,

where x and u are scalars, and the cost function,

J(x0) =

∫ ∞
0

g(x(t), u(t))dt, g(x, u) = x2 + u2, x(0) = x0,

which we would like to minimize. Suppose you are also given the candidate
cost-to-go function

Ĵ(x) = x4 − x2 +
1

4
.

Use the optimality conditions to derive the control law associated with this cost-
to-go:

û = argmin
u

[
g(x, u) +

∂Ĵ

∂x
f(x, u)

]
.

Show your work.

Solution: Because the argmin is taken over a positive quadratic form in u, we
can do the minimization by finding the u for which the gradient of the right-hand
side (RHS) is zero:

û = argmin
u

[
x2 + u2 + (4x3 − 2x)(x+ u)

]
∂RHS
∂u

= 2u+ (4x3 − 2x) = 0

û = −2x3 + x
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b) Is the controller derived above optimal? Circle one of the following:

YES or NO or INCONCLUSIVE

Solution: This was a tricky question. The most important point by far was to
demonstrate that you understand the fact that the HJB condition is a sufficient
condition, but not a necessary one. Substituting Ĵ and the û derived in part
(a) into the HJB you will see that it does not match with equality. This would
lead one to circle ”Inconclusive”. Circling ”No” using only this justification is
absolutely incorrect.

But it turns out that we do know more for this problem. The dynamics are linear
and the objective is a positive quadratic – so the problem formulation is LQR!
Since LQR results in a linear optimal feedback and quadratic cost-to-go, we
can definitively conclude that the correct solution is ”NO”, the controller is not
optimal.

c) Using the system and controller from part (a), what are the fixed points of the
closed-loop system. For each fixed point, say if it is locally unstable, locally
stable i.s.L, locally asymptotically stable, and/or locally exponentially stable.

Solution: Using this controller, the closed-loop dynamics are

ẋ = 2x− 2x3.

This is just −2 times the cubic example used in the lecture notes. The fixed
points are at x = −1,0, and 1. Sketching the one-dimesional flow, we can verify
graphically that x = −1 and x = 1 are locally stable fixed points, and that x = 0
is locally unstable. Both stable fixed points are stable i.s.L, asymptotically, and
exponentially, which can be demonstrated graphically by drawing a line between
the ẋ-curve and the x-axis to represent an exponentially stable linear system
which this system converges faster than.

Alternatively, we can verify the stability by evaluating the derivative at the fixed
points, and noting that locally, the stable fixed points look like

˙̄x ≈ (2− 6(12))x̄ = −4x̄.
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d) Now consider a similar problem, but we will remove the input term from the cost
function and add input limits to the system, so that we have

ẋ = x+ u, |u| ≤ 1,

and the cost function,

J(x0) =

∫ ∞
0

g(x(t), u(t))dt, g(x, u) = x2, x(0) = x0,

which we would like to minimize. Using the same candidate cost-to-go function

Ĵ(x) = x4 − x2 +
1

4
,

use the optimality conditions to derive the control law associated with the cost
to go for this problem. Show your work.

Solution on next page
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e) Using the system and controller from part (d), what are the fixed points of the
closed-loop system. For each fixed point, say if it is locally unstable, locally
stable i.s.L, locally asymptotically stable, and/or locally exponentially stable.

The closed-loop system has unstable fixed points at x = 0, x = −1, and x = 1.
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